Complete genome sequence of Desulfocapsa sulfexigens, a marine deltaproteobacterium specialized in disproportionating inorganic sulfur compounds

نویسندگان

  • Kai Waldemar Finster
  • Kasper Urup Kjeldsen
  • Michael Kube
  • Richard Reinhardt
  • Marc Mussmann
  • Rudolf Amann
  • Lars Schreiber
چکیده

Desulfocapsa sulfexigens SB164P1 (DSM 10523) belongs to the deltaproteobacterial family Desulfobulbaceae and is one of two validly described members of its genus. This strain was selected for genome sequencing, because it is the first marine bacterium reported to thrive on the disproportionation of elemental sulfur, a process with a unresolved enzymatic pathway in which elemental sulfur serves both as electron donor and electron acceptor. Furthermore, in contrast to its phylogenetically closest relatives, which are dissimilatory sulfate-reducers, D. sulfexigens is unable to grow by sulfate reduction and appears metabolically specialized in growing by disproportionating elemental sulfur, sulfite or thiosulfate with CO2 as the sole carbon source. The genome of D. sulfexigens contains the set of genes that is required for nitrogen fixation. In an acetylene assay it could be shown that the strain reduces acetylene to ethylene, which is indicative for N-fixation. The circular chromosome of D. sulfexigens SB164P1 comprises 3,986,761 bp and harbors 3,551 protein-coding genes of which 78% have a predicted function based on auto-annotation. The chromosome furthermore encodes 46 tRNA genes and 3 rRNA operons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment.

A mesophilic, anaerobic, gram-negative bacterium, strain SB164P1, was enriched and isolated from oxidized marine surface sediment with elemental sulfur as the sole energy substrate in the presence of ferrihydrite. Elemental sulfur was disproportionated to hydrogen sulfide and sulfate. Growth was observed exclusively in the presence of a hydrogen sulfide scavenger, e.g., ferrihydrite. In the abs...

متن کامل

Draft Genome Sequence of Acidithiobacillus sp. Strain SH, a Marine Acidophilic Sulfur-Oxidizing Bacterium

We announce here the genome sequence of a marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus sp. strain SH. The bacterium has potential for use in bioleaching of sulfide ores from seawater and contains a noble gene for thiosulfate quinone oxidoreductase in addition to specific genes for the oxidation of reduced inorganic sulfur compounds.

متن کامل

Complete genome sequence of Sulfurimonas autotrophica type strain (OK10T)

Sulfurimonas autotrophica Inagaki et al. 2003 is the type species of the genus Sulfurimonas. This genus is of interest because of its significant contribution to the global sulfur cycle as it oxidizes sulfur compounds to sulfate and by its apparent habitation of deep-sea hydrothermal and marine sulfidic environments as potential ecological niche. Here we describe the features of this organism, ...

متن کامل

Complete Genome Sequence of the Extremely Thermoacidophilic Archaeon Acidianus manzaensis YN-25

The complete genome of Acidianus manzaensis YN-25 consists of a chromosome of 2,687,463 bp, with a G+C content of 30.62% and 2,746 coding DNA sequences. This archaeon contains a series of specific genes involved in the oxidation of elemental sulfur and reduced inorganic sulfur compounds.

متن کامل

Genome Analysis of Thermosulfurimonas dismutans, the First Thermophilic Sulfur-Disproportionating Bacterium of the Phylum Thermodesulfobacteria

Thermosulfurimonas dismutans S95(T), isolated from a deep-sea hydrothermal vent is the first bacterium of the phylum Thermodesulfobacteria reported to grow by the disproportionation of elemental sulfur, sulfite, or thiosulfate with carbon dioxide as the sole carbon source. In contrast to its phylogenetically close relatives, which are dissimilatory sulfate-reducers, T. dismutans is unable to gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013